本文仅为学习记录,并非教程
这次记录文主要侧重于应用,参考了Sob老师的博文和网络上的各大教程
以FCC Cu为例进行ELF计算与分析
采用FCC面心立方最密堆积的铜单胞,使用vasp计算,先进行结构优化,确认收敛后进行ELF计算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| Global Parameters ISTART = 1 (Read existing wavefunction, if there) ISPIN = 2 (Non-Spin polarised DFT) MAGMOM = 4*0.6 # ICHARG = 11 (Non-self-consistent: GGA/LDA band structures) LREAL = .FALSE. (Projection operators: automatic) ENCUT = 530 (Cut-off energy for plane wave basis set, in eV) # PREC = Accurate (Precision level: Normal or Accurate, set Accurate when perform structure lattice relaxation calculation) LWAVE = .TRUE. (Write WAVECAR or not) LCHARG = .TRUE. (Write CHGCAR or not) ADDGRID= .TRUE. (Increase grid, helps GGA convergence) LASPH = .TRUE. (Give more accurate total energies and band structure calculations) PREC = Accurate (Accurate strictly avoids any aliasing or wrap around errors) # LVTOT = .TRUE. (Write total electrostatic potential into LOCPOT or not) # LVHAR = .TRUE. (Write ionic + Hartree electrostatic potential into LOCPOT or not) # NELECT = (No. of electrons: charged cells, be careful) # LPLANE = .TRUE. (Real space distribution, supercells) # NWRITE = 2 (Medium-level output) # KPAR = 2 (Divides k-grid into separate groups) # NGXF = 300 (FFT grid mesh density for nice charge/potential plots) # NGYF = 300 (FFT grid mesh density for nice charge/potential plots) # NGZF = 300 (FFT grid mesh density for nice charge/potential plots)
Electronic Relaxation ISMEAR = 1 (Gaussian smearing, metals:1) SIGMA = 0.2 (Smearing value in eV, metals:0.2) NELM = 90 (Max electronic SCF steps) NELMIN = 6 (Min electronic SCF steps) EDIFF = 1E-08 (SCF energy convergence, in eV) # GGA = PS (PBEsol exchange-correlation)
Ionic Relaxation NSW = 0 (Max ionic steps) IBRION = -1 (Algorithm: 0-MD, 1-Quasi-New, 2-CG) ISIF = 2 (Stress/relaxation: 2-Ions, 3-Shape/Ions/V, 4-Shape/Ions) EDIFFG = -2E-02 (Ionic convergence, eV/AA) # ISYM = 2 (Symmetry: 0=none, 2=GGA, 3=hybrids) LELF = .TRUE. NPAR = 1
|
在优化完的结构上进行自洽计算,添加LELF = .TRUE.
这个参数,确保ELFCAR
文件输出
官方wiki还提到必须显示开启NPAR = 1
,然而网上的各大教程都没有提到这一点
If LELF is set, NPAR=1 has to be set explicitely in the INCAR file in addition
且有一篇讨论帖:https://wiki.vasp.at/forum/viewtopic.php?t=20020
不过我自己尝试的时候发现超算平台上添加NPAR = 1
会报错,而在自己电脑上则不会报错,有点迷、、、
用Vesta
载入ELFCAR
文件
先设置一下等值面数值
Isosurface Level(等值面水平)是一个关键参数,用于控制可视化电子局域化程度的阈值,VESTA会绘制出ELF等于该值的等值面(isosurface),直观展示电子局域化程度高于该阈值的区
Properties-Isosurfaces-Isosurfaces level,设置完后可以按以下Tab
键就会自动保存应用

这里如果设置0.75的话啥也看不到,因为铜单胞中存在着金属键,并没有很强的局域化电子,而是均匀分布的电子气
**高定域性通常出现在共价作用区域、孤对电子区域、原子内核及壳层结构区域 **
然后就可以查看ELF图了
首先是3D的图
左上角-Edit-Lattice planes,新建一个图,根据想查看的面的来设置米勒指数hlk,以及设置距离d

然后是2D的图
左上角-Utilities-2D Data Display-Slice即可


可以看到,顶点Cu与顶点Cu原子之间、顶点Cu和面心Cu之间的电子的局域化程度比较高并且没有明显的偏向偏离
接下来看一下一维时的电子定域化情况
左上角-Utilities-Line profile即可

Cu和Cu两原子中间存在均匀的非零的电子局域函数,虽然不足0.5但分布平坦,这是金属键合的特征
两个铜原子的ELF®值相近

三个铜原子的ELF®值相近
离子晶体CsF
再看一下离子键的情况,以CsF为例

氟和铯之间出现深蓝色,这说明在这个区域电子的分布较为离域化,即氟和铯之间不存在共用电子,键的类型偏向离子键
再看看对角线上的电荷分布

两端为铯中间为氟,可以看到氟和铯ELF®值差别较大
共价晶体——硅

如箭头所指,硅原子和硅原子之间有较强的电子定域化作用,键的类型为共价键
如下图,体对角线上的ELF图也能很好证明,Si-Si之间的区域电子化定域程度极高,呈现明显的尖峰

共价晶体——灰锡
我仍记得高中时课本讲的一个稍微有些特殊的例子——灰锡,灰锡是一个共价晶体

可以看到,灰锡与晶体硅结构上类似,Sn(41,41,41)与Sn(0,0,0)与以及Sn(0.5,0.5,0)成键,Sn(43,43,41)与Sn(0.5,0.5,0)和Sn(1,1,0)成键。成键电子局域化程度较高,为共价电子