如题,记录一下在计算时遇到的各种报错
2025.05.14
1 | ----------------------------------------------------------------------------- |
删除NPAR = 1
参数
如题,记录一下在计算时遇到的各种报错
1 | ----------------------------------------------------------------------------- |
删除NPAR = 1
参数
记录一下维也纳第一性原理计算软件包(VASP)的学习过程,有点乱、、、
计算一个体系会出现两种优化过程
OSICAR
用于记录优化过程的信息
在INCAR
中设置ALGO
参数可以指定算法
ZVAL
是POTCAR
中对应元素的价电子
查看K点的个数:
1 | grep irreducible OUTCAR |
固体物理中,费米能级对应的是最高电子占据轨道的能量,也就是HOMO
以下情况需要考虑自旋极化
EDIFF 控制电子步(自洽)的收敛标准,在O原子的计算中,由于我们不需要优化,直接进行静态计算,完全由EDIFF控制计算的收敛情况
EDIFFG控制离子步的收敛标准
单点计算、静态计算、自洽计算:几何结构计算前后不发生变化
IRBION
优化分子结构
一般来说,优化结构的时候有3个选择:
CONTCAR
包含优化完之后的信息
频率计算的作用
entropy
,用于计算化学势,微观动力学中的指前因子和反应能垒。频率分析的关键参数
1 | IBRION = 5 #之前设置的2 |
怎么确定POSCAR中的原子?——比如乙醇中的羟基氢是POSCAR中的哪一个呢???
晶胞&&原胞
7种晶系与14种布拉维点阵:简单三六菱,单斜底,四方体
NWRITE
用来控制输出文件的详细程度
1 | NWRITE = 0 # 最小输出 |
ISTART
用来初始化波函数
1 | ISTART = 1 #读取WAVECAR续算 |
单纯从数据库中获取的结构,只能作为一个合理的初始值,与计算所得到的理论结构还有一定的差距,因此我们需要对该结构进行优化才可以获取稳定的晶格参数信息。有两个方法可以实现:
Birch-Murnaghan方程 $$ E(a)=E_0+\dfrac{9V_0B_0}{16}([(\frac{a_0}{a})^2-1]^3B_0^{'}+[(\dfrac{a_0}{a})-1]^2[6-4(\frac{a_0}{a})^2]) $$
$$ (\dfrac{V_0}{V})^{\frac{2}{3}}=(\dfrac{a_0^3}{a_{actual}^3})^{\frac{2}{3}}=(\dfrac{a_0}{a_{actual}})^2 $$
$$ x=\dfrac{1}{(a\times 2.8664)^2} $$
a代表缩放系数,2.8664是晶胞参数
除了用B-M方程拟合来确定晶格常数之外,还可以使用直接优化法确定晶格常数:ISIF = 3 + ENCUT
ISIF=2
(默认):优化原子位置ISIF=3
:优化原子位置 + 晶胞形状/体积。单点计算误区
NSW=0
或 IBRION=-1
)时无需设置
ISIF=0
,因为离子已固定。ISIF=0
会禁用应力计算,可能导致后续分析缺失数据。为何需要增大 ENCUT
?
ENCUT
(直接优化法)ENCUT = 1.3 * max(ENMAX)
(ENMAX
取自
POTCAR
)ENMAX=267.882 eV
→
ENCUT=350 eV
(但文档设置为
600 eV
,更保守)DOS态密度计算需要使用更多的K点
A high quality DOS requires usually very fine k-meshes.
ISMEAR
的选择
电子数的积分区间是从负无穷到费米能级
ISTART = 0 | 1 |2 |3
默认值
ISTART = 2,读取WAVECAR,截断能原胞不发生改变
ICHARG = 0 | 1 |2 | 4 | 5
PREC = Normal | Single | SingleN | Accurate | Low | Medium | High
LREAL = .FALSE. | Auto (or A) | On (or O) | .TRUE.
ALGO = Normal | VeryFast | Fast | Conjugate | All | Damped | Subrot | Eigenval | Exact | None | Nothing | CHI | G0W0 | GW0 | GW | scGW0 | scGW | G0W0R | GW0R | GWR | scGW0R | scGWR | ACFDT | RPA | ACFDTR | RPAR | BSE | TDHF
默认值: Normal
ENCUT = [real]
默认为POTCAR中的ENMAX,但是官方==强烈建议==在 INCAR 文件中始终手动指定能量截止 ENCUT,以确保计算之间的准确性相同。否则,不同计算之间的默认 ENCUT 可能会有所不同(例如,对于内聚能的计算),结果是无法比较总能量。
ISMEAR = -15 | -14 | -5 | -4 | -3 | -2 | -1 | 0 | [integer]>0
默认值:1
ISMEAR 决定如何为每个轨道设置部分占据数 fnk ,SIGMA 以电子伏特(eV)为单位确定展宽的宽度
以下是来自AI的比喻解释:
ISMEAR = -5
:采用Blöchl修正的四面体方法,无展宽,严格按台阶处理(绝对精确,但只适用于绝缘体/半导体,速度慢)ISMEAR = 0
:采用高斯展宽,用高斯函数“模糊”台阶边缘(适合半导体/绝缘体,平衡精度和速度)ISMEAR = 1
:默认值,用更复杂的函数模糊台阶(适合金属,容忍更多模糊,计算快)ISMEAR
选择用高斯函数模糊时,SIGMA
决定模糊的程度(就像PS里“高斯模糊”的半径)体系类型 | 推荐 ISMEAR | 推荐 SIGMA | 注意事项 |
---|---|---|---|
绝缘体/半导体(原子、分子) | 0 (绝对不能大于零) |
0.05~0.1 | 不要用 ISMEAR=1 ,会引入误差! |
金属 | 1 |
0.1~0.2 | SIGMA 太小会导致震荡! |
能带/DOS计算 | -5 |
不用设置(不展宽) | 仅适用于绝缘体,且需要密集 K 点! |
ISMEAR=1
→
结果完全错误!ISMEAR=0
→ SCF
难收敛,疯狂报错!假设你计算 硅(半导体): -
正确设置: 1
2ISMEAR = 0
SIGMA = 0.05
1
2ISMEAR = 1 # 会引入非物理的金属性!
SIGMA = 0.5 # 能量误差可能大到 1 eV!
ISMEAR=0
+ 小
SIGMA(0.05~0.1)ISMEAR=1
+ 稍大
SIGMA(0.1~0.2)ISMEAR=-5
(别动
SIGMA)Default: IBRION = -1 for NSW=−1 or 0
= 0 else
NSW = [integer]
Default: NSW = 0
IBRION确定了在计算过程中晶体结构如何变化,如何寻找最低点(“山谷”),POTIM就是“每次移动的距离”
POTIM 太大 → 跨步太大,可能跳过最低点(震荡不收敛)POTIM 太小 → 移动太慢,优化耗时
默认值:NCORE = 1
NCORE的设置可以优化计算资源,降低内存用量(但有可能降低计算速度),如果体系非常小那就可以不用设置,直接并行即可
1 | mpirun -n 'core numbers' vasp |
LDIPOL 开启对势能和力的修正。可应用于具有净偶极矩的带电分子和平板
LDIPOL = .TRUE. | .FALSE.
默认值:LDIPOL = .FALSE.
偶极子的存在与周期性边界条件相结合,会导致总能量随超胞大小的收敛速度缓慢。此外,有限尺寸误差会影响势能和力。通过在 INCAR 文件中设置 LDIPOL=.TRUE. 可以抵消这种影响。对于 LDIPOL=.TRUE.,会添加一个线性校正,对于带电的晶胞,会添加一个二次静电势到局部势中,以校正由周期性边界条件引入的误差。激活此标签时,==必须指定标签 IDIPOL,也可以选择指定标签 DIPOL==
这种模式的最大优点是力中的主导误差得到了修正,并且可以针对非对称平板评估功函数。缺点是向电子基态的收敛可能会==显著减慢==,也就是说,可能需要更多的电子迭代来获得所需的精度
IDIPOL = 1 | 2 | 3 | 4
IDIPOL = 1-3,仅分别沿第一、第二或第三晶格矢量方向计算偶极矩,此标志应用于平板计算,表面法线为设置 IDIPOL 的方向,并可选择使用 DIPOL 标签指定平板的质心
IDIPOL = 4,将计算所有方向上的全偶极矩,对孤立分子进行计算时使用此标志
ISPIN = 1 | 2
默认:ISPIN = 1,执行非自旋极化计算
ISPIN = 2,执行自旋极化计算(共线)
对于非共线计算,忽略 ISPIN。在 VASP 6.5.0 中,如果 ISPIN = 2 且 MAGMOM 与 LNONCOLLINEAR=.TRUE. ==结合使用==,计算将以错误消息退出
默认值等于60
LWAVE = [logical] 默认值:LWAVE = .NOT. LH5 | .TRUE.
一般情况不开,文件巨大、、、
LCHARG = .NOT.LH5 | .TRUE. 默认值:LCHARG = .NOT. LH5
ADDGRID = .TRUE. | .FALSE. 默认值:ADDGRID = .FALSE.
==因此,我们建议进行细致的测试,以验证 ADDGRID 是否按预期工作;请不要默认在所有计算中使用此标签!==
看不懂思密达、、、
LASPH = .TRUE. | .FALSE.
默认值:LASPH = .FALSE.
LASPH = .TRUE.
默认值:LVHAR = .FALSE.
PROCAR
和DOSCAR
文件的内容(若LORBIT
≥10还会生成LOCPOT
等文件)值 | 功能说明 |
---|---|
0 | 默认值,不计算轨道投影(仅输出总能带和总态密度)。 |
1 | 计算原子轨道的投影(写入PROCAR ),但不分解到具体轨道(如s/p/d)。 |
2 | 分解到轨道角动量(s/p/d/f)的投影,但不分磁量子数(如px/py/pz不分开)。 |
10 | 类似LORBIT=1 ,但额外输出LOCPOT 文件(包含局域势信息)。 |
11 | 类似LORBIT=2 ,但额外输出LOCPOT 文件。 |
12 | 最常用:分解到磁量子数(如px/py/pz分开),适合详细轨道分析。 |
主要影响交换关联势(XC Potential)和电荷密度(Charge Density)的计算精度
默认值:LASPH = .FALSE.
作用:决定是否在计算中考虑电子密度和势场的非球对称部分(即角动量
l > 0
的贡献)。
LASPH = .TRUE.
,VASP会计算电子密度和势场的高阶角动量分量(如
d, f
轨道),提升精度。LASPH = .FALSE.
(默认值),仅考虑球对称部分(l = 0
),计算更快但可能损失部分精度(当 IBRION = 0 且 VASP 使用-Dtbdyn 编译时才启用)
MDALGO = 0 | 1 | 2 | 3 | 4 | 5 | 11 | 21 | 13
MDALGO 取值 | 恒温器 / 模拟方式 | 适用系综 | 设置要点 |
---|---|---|---|
0 | 标准分子动力学 | NVE | 设置 IBRION=0、TEBEG、POTIM、NSW;MDALGO=0;SMASS=-3 |
1 | 安徒生恒温器 | NVT | 设置 IBRION=0、TEBEG、POTIM、NSW;MDALGO=1;选择合适的 ANDERSEN_PROB |
2 | Nose-Hoover 恒温器 | NVT | 设置 IBRION=0、TEBEG、POTIM、NSW;MDALGO=2;选择合适的 SMASS |
3 | 朗之万恒温器 | NVT、NpT | NVT 模拟:设置 IBRION=0、TEBEG、POTIM、NSW;ISIF=2;MDALGO=3;在 POSCAR 文件通过 LANGEVIN_GAMMA-tag 指定摩擦系数 NpT 模拟:设置 IBRION=0、TEBEG、POTIM、NSW;ISIF=3;MDALGO=3;在 POSCAR 文件通过 LANGEVIN_GAMMA-tag 指定摩擦系数;通过 LANGEVIN_GAMMA_L-tag 指定晶格自由度摩擦系数;通过 PMASS-tag 设置晶格自由度质量;可通过 PSTRESS-tag 定义外部压力 |
4 | Nose Hoover chains 恒温器 | NVT | 设置 IBRION=0、TEBEG、POTIM、NSW;ISIF=2;MDALGO=4;选择 NHC_NCHAINS 和 NHC_PERIOD |
5 | CSVR 恒温器 | NVT | 设置 IBRION=0、TEBEG、POTIM、NSW;ISIF=2;MDALGO=5;选择 CSVR_PERIOD |
13 | 多个安徒生恒温器 | - | 在 POSCAR 文件按顺序定义子系统原子位置;设置 NSUBSYS 定义每个子系统的最后一个原子;设置 TSUBSYS 定义每个子系统的模拟温度;设置 PSUBSYS 定义每个子系统原子的碰撞概率(0≤PSUBSYS≤1) |
SMASS = -3 | -2 | -1 | [real] ≥ 0
Default: SMASS = -3
对于SMASS = -3,模拟了一个微正则系综(NVE系综)
Tip: To calculate an NVE ensemble we instead recommend to use
MDALGO = 1
andANDERSEN_PROB = 0.0
对于 SMASS = -2,初始速度保持恒定。这使得能够计算一组不同线性相关位置(例如冻结声子或具有不同键长的二聚体)的能量。
注意:如果 SMASS = -2,实际采取的步数为 POTIM×(从 POSCAR 文件读取的速度)。为避免歧义,请将 POTIM 设置为 1
DFT中,标准的交换关联泛函(如PBE、LDA)无法准确描述范德华力,因此需要通过额外的修正方法来处理
默认不启用范德华修正
At roughly 4 PM on July 20, 1969, ==mankind was just minutes away from landing on the surface of the moon== .
But before the astronauts began their final ==descent== , an emergency alarm lit up.
Something was ==overloading== the computer and threatened to ==abort the landing== .
Back on Earth, Margaret Hamilton held her breath.
She’d led the team developing the pioneering in-flight software, so she knew this mission ==had no room for error== .
But the ==nature== of this last-second emergency would soon prove her software was working exactly as planned.
Born 33 years earlier in Paoli, Indiana, Hamilton had always been ==inquisitive== .
In college, she studied mathematics and philosophy before taking a research position at the Massachusetts Institute of Technology to pay for grad school.
Here, she encountered her first computer while developing software to support research into the new field of chaos theory.
Next, at MIT’s Lincoln Laboratory, Hamilton developed software for America’s first ==air defense system== to search for enemy aircraft.
But when she heard that renowned engineer Charles Draper was looking for help sending mankind to the moon, she immediately joined his team.
NASA ==looked to== Draper and his group of over 400 engineers to invent the first ==compact== digital flight computer, the Apollo Guidance Computer.
Using input from astronauts, this device would be responsible for guiding, navigating, and controlling the spacecraft.
At a time when unreliable computers filled entire rooms, the AGC needed to operate without any errors and ==fit in one cubic foot of space== .
Draper divided the lab into two teams: one for designing hardware and one for developing software.
Hamilton led the team that built the ==on-board== flight software for ==both the Command and Lunar Modules== .
This work, for which she ==coined== the term “software engineering,” was incredibly ==high stakes== .
==Human lives were on the line== , so every program had to be perfect.
Margaret’s software needed to quickly detect unexpected errors and recover from them in real time.
But this kind of adaptable program was difficult to build, since early software could only process jobs in a ==predetermined== order.
To solve this problem, Margaret designed her program to be “ ==asynchronous== ,” meaning the software’s more important jobs would interrupt less important ones.
Her team assigned every task a unique priority to ensure that each job occurred in the correct order and at the right time—regardless of any surprises.
After this breakthrough, Margaret realized her software could help the astronauts work in an ==asynchronous== environment as well.
She designed ==Priority Displays== that would interrupt astronauts’ regularly scheduled tasks to warn them of emergencies.
The astronaut could then communicate with Mission Control to determine the best path forward.
This marked the first time flight software communicated directly—and asynchronously—with a pilot.
It was these ==fail-safes== that triggered the alarms just before the lunar landing.
Buzz Aldrin quickly realized his mistake—he’d ==inadvertently== flipped the ==rendezvous== radar switch.
This radar would be essential on their journey home, but here it was using up vital computational resources.
Fortunately, the Apollo Guidance Computer was well equipped to manage this.
During the overload, the software restart programs allowed only the highest priority jobs to be processed—including the programs necessary for landing.
The Priority Displays gave the astronauts a choice: to land or not to land.
With minutes to spare, Mission Control gave the order.
The Apollo 11 landing was about the astronauts, Mission Control, software, and hardware all working together as an integrated system of systems.
Hamilton’s contributions were essential to the work of engineers and scientists inspired by President John F. Kennedy’s goal to reach the Moon.
And her life-saving work ==went far beyond== Apollo 11—no bugs were ever found in the in-flight software for any crewed Apollo missions.
After her work on Apollo, Hamilton founded a company that uses its unique universal systems language to create breakthroughs for systems and software.
In 2003, NASA honored her achievements with the largest financial award they’d ever given to an individual.
And 47 years after her software first guided astronauts to the moon, Hamilton was awarded the Presidential Medal of Freedom for changing the way we think about technology. # Vocabulary, Phrases and Sentences
Words | Chinese Definition | Phonetic Symbol |
---|---|---|
mankind was just minutes away from landing on the surface of the moon | ||
descent | ||
overload | ||
abort the landing | ||
had no room for error | ||
nature | ||
inquisitive | ||
air defense system | ||
look to | ||
compact | ||
fit in one cubic foot of space | ||
on-board | ||
both the Command and Lunar Modules | ||
coin | ||
high stake | ||
Human lives were on the line | ||
predetermined | ||
asynchronous | ||
priority display | ||
fail-safe | ||
inadvertently | ||
rendezvous | ||
went for beyond |
Words | Chinese Definition | Phonetic Symbol |
---|---|---|
mankind was just minutes away from landing on the surface of the moon | 人类距离登上月球表面只有几分钟了 | /ˈmæŋkaɪnd wəz dʒʌst ˈmɪnɪts əˈweɪ frəm ˈlændɪŋ ɒn ðə ˈsɜːfɪs ɒv ðə muːn/ |
descent | 下降;降落;血统 | /ˈdiːsent/ |
overload | 使超载;使负担过重 | /ˈəʊvələʊd/ |
abort the landing | 中止着陆 | /əˈbɔːt ðə ˈlændɪŋ/ |
had no room for error | 没有犯错的余地 | /ˈhæd nəʊ ruːm fɔːr ˈerə(r)/ |
nature | 自然;本性;性质 | /ˈneɪtʃə(r)/ |
inquisitive | 好奇的;好问的 | /ɪnˈkwɪzətɪv/ |
air defense system | 防空系统 | /ˈeə(r) dɪˈfens ˈsɪstəm/ |
look to | 指望;依靠;注意 | /ˈlʊk tuː/ |
compact | 紧凑的;紧密的;简洁的 | /ˈkɒmpækt/ |
fit in one cubic foot of space | 能装进一立方英尺的空间 | /ˈfɪt ɪn wʌn ˈkjuːbɪk fuːt ɒv speɪs/ |
on-board | 在船上;在飞机上;在板上 | /ˈɒnˈbɔːd/ |
both the Command and Lunar Modules | 指挥舱和登月舱 | /ˈbəʊθ ðə kəˈmɑːnd ænd ˈluːnə(r) ˈmɒdjuːlz/ |
coin | 硬币;创造(新词语) | /ˈkɔɪn/ |
high stake | 高风险;高赌注 | /ˈhaɪ steɪk/ |
Human lives were on the line | 人的生命危在旦夕 | /ˈhjuːmən laɪvz wəz ˈɒn ðə laɪn/ |
predetermined | 预先确定的;预定的 | /ˈpriːdɪˈtɜːmɪnd/ |
asynchronous | 异步的 | /ˈeɪsɪŋkrənəs/ |
priority display | 优先级显示 | /ˈpraɪˈɒrəti dɪˈspleɪ/ |
fail-safe | 故障安全的;自动防故障的 | /ˈfeɪlˈseɪf/ |
inadvertently | 不经意地;无意中 | /ˌɪnədˈvɜːtəntli/ |
rendezvous | 会合;约会地点 | /ˈrɒndɪvuː/ |
went far beyond | 远远超出 |
锂电池中的相?——有助于获得==晶体结构与组成==
关注材料的e物相,包括晶体结构、化学组成、结晶度、固液态
从电子自旋态来看,==3d电子常常具有自旋长程关联作用==,表现出不同的磁性状态
==磁态来解释充放电过程中的异常情况==
大部分固态相变属于一级相变,只有少部分属于二级相变
显著平台——一级相变
保持固溶体——二级相变
NIPP钠电池正极
前驱体的合成可能出现杂相
==LiAlO2==具有较高化学稳定性和热吻星星
==六方相R-3m==正极材料,α − NaFeO2结构,相容性比较好,可用作包覆材料,包覆后形成固溶体很难表征
锂电正极非常关键的程序是——煅烧
目前主要采用液体电解质和聚合物胶体电解质(有机液体、固态)
低温熔融盐:离子液体
相转变型电解质
当温度升高时,分子晶体中的位置有序可能出现三种情况:
在Tg之上的
液态电解液的的运输:溶剂化效应与去溶剂化效应
固态电解质尽量选软一点的,贴合得比较好
NASCION(锂离子快离子导体)相变
按照缺陷类型和相变机制可以将固态电解质分为三类
既可做正极材料又可作固态电解质
固态电解质
负极材料的相变
将锂插入层间可得到LiC24
+:磷酸铁锂
-:石墨
低温失活原理
电池结构优化—加热元件
各种外部加热策略:
各种内加热策略:
溶剂优化—凝固点
降低液体凝固点
液态气体电解液:常温气体、低温液体
低温溶剂可能粘度比较大
基本要求:
电解液优化方案:
经典文献:
Time for lithium-ion alternative
sodium is the lithium
fundamentals,stauts and promise od sodoium-based
能量密度雨锂离子电池有差距,原子质量比较大,原子半径更大造成能量密度低,钠离子迁移更慢导致功率密度低
,相对标准电极电位更大,全电池电压较小
体积比容量(mAh/cm),比容量(mAh/g)
液态钠离子电池:
正极=磷酸烦呐+conductive additive
隔膜:玻璃纤维
全固态钠离子电池
提升质量能量密度、提及能量密度,成本降低、安全更高
问题:
关键性能指标
聚合物固态电解质
无极固态电解质
离子的体相传输机制
晶界
111生长&110生长
电流密度-电势梯度、浓度梯度:能斯特-普朗克方程 $$ \sigma_i=\dfrac{\sigma_o}{T}e^{-\dfrac{E_a}{RT}} $$ 离子电导率和温度、活化能的关系
测阻抗谱计算材料在测
什么样的材料是快离子导体呢(>10mS/cm)
多面体畸变(Jahn-Teller效应)
配位环境决定,迁移到低能量位点(比如尖晶石结构)
阴离子的旋转机制
增大无序度(高熵材料)
离子在晶界处的传输?
有三种可能存在的界面
金属的沉积性质
负极和界面的问题
失效机制
储能电池与动力电池
350Wkh/kg——液态电池,固态电池不用隔膜(非活性物质)
正极开裂,正极全固态电池中不同部位的力学性能不同,应变不同
泊松比决定是否容易断裂
力学均一性
第二相结晶强化
周三了,突然发现这学期的课好无聊,两门实验课。物理化学实验原理稍显复杂,并且放入的原理其实并没有特别重要,唯一需要操心的就是整个流程原理和数据分析。可能只有用Origin分析数据、联系的时候会稍稍提起一点兴趣吧,实验报告其他地方是一点都不想写,抄书真无聊~、、、
今天是周二,上午上完高分子物理后马不停蹄继续整理单原子的元素周期表以及参考文献,下午继续调整段落结构增加逻辑性、可读性,终于是改完了自己的文章,交给老师了,不知道后面会怎么样,应该不比有这次大修更痛苦了吧?
接近十三天的爆肝大修,回头看寒假前完成的初稿写的和shit一样、、、
这十几天英语啥的都荒废咯,TED、大西洋月刊都还没来得及读呢,就从明天整装待发吧!
这个部分类似于日记吧?“沉思录”这个标题来自于知乎上一个读博学长的日记,所以我也尝试在博客里写日记,尽量坚持下来吧哈哈,反正这里基本上没人(
阳离子空位(即阳离子亚晶格中的空缺)通常由高价阳离子取代或低价阴离子取代引起,通过电荷补偿实现电中性。
示例:在石榴石型电解质$\rm{Li_7La_3Zr_2O_{12}}$(LLZO)中,Al³⁺取代Li⁺(Li⁺为+1价):
示例:硫银锗矿Li₆PS₅Cl中,Cl⁻(-1价)取代S²⁻(-2价):
阴离子空位(阴离子亚晶格中的空缺)通常由高价阴离子掺杂或阳离子空位补偿引起。
示例:在氧化锆(ZrO₂)中掺杂Y³⁺(取代Zr⁴⁺):
示例:在钙钛矿型氧化物中,Sr²⁺取代La³⁺(La₁₋ₓSrₓMnO₃):
Δq = z掺杂 − z原始 = ∑(空位或间隙电荷贡献)
掺杂类型 | 价态差(Δq) | 补偿方式 | 空位类型 |
---|---|---|---|
高价阳离子→低价位点 | Δq > 0 | 产生阳离子空位 | 阳离子空位 |
低价阳离子→高价位点 | Δq < 0 | 产生阳离子间隙或阴离子空位 | 阴离子空位 |
高价阴离子→低价位点 | Δq > 0 | 产生阴离子空位 | 阴离子空位 |
低价阴离子→高价位点 | Δq < 0 | 产生阴离子间隙或阳离子空位 | 阳离子空位 |
材料体系 | 掺杂类型 | 空位类型 | 电导率提升机制 |
---|---|---|---|
Li₅.₅PS₄.₅Cl₁.₅ | Cl⁻取代S²⁻ | Li⁺空位 | 降低Li⁺迁移能垒 |
LLZO(Al³⁺掺杂) | Al³⁺取代Li⁺ | Li⁺空位 | 增加Li⁺迁移通道 |
YSZ(Y³⁺掺杂) | Y³⁺取代Zr⁴⁺ | O²⁻空位 | 促进O²⁻离子迁移 |
La₀.₈Sr₀.₂MnO₃ | Sr²⁺取代La³⁺ | O²⁻空位 | 优化氧离子传输路径 |
在材料科学中,“空位”(Vacancy)、“间隙”(Interstitial)和“空隙”(孔洞/Void)是描述晶体缺陷的不同概念,它们对材料性能的影响截然不同。以下详细区分这三者,并结合硫银锗矿电解质的例子说明其作用:
特征 | 空位(Vacancy) | 间隙(Interstitial) | 空隙(Void) |
---|---|---|---|
缺陷类型 | 点缺陷 | 点缺陷 | 体积缺陷 |
尺度 | 原子级别(Å尺度) | 原子级别(Å尺度) | 微观至宏观(nm~μm) |
对传导的影响 | 提供迁移路径(关键) | 可能辅助或阻碍传导 | 阻碍传导(增加电阻) |
可控性 | 可通过掺杂精确调控 | 需调节成分或合成条件 | 依赖制备工艺优化 |
典型示例 | Li₅.₅PS₄.₅Cl₁.₅中Li⁺空位 | Li₁₀GeP₂S₁₂中间隙Li⁺ | 烧结不足的电解质孔洞 |
One of the odder coincidences of physical geography is the fact that there are two double islands, roughly the same size, positioned at each other’s antipodes, or farthest-distant point. The islands of England and Ireland in the Northern Hemisphere and the islands of North Island and South Island in the southern Hemisphere are just such a coincidence. The first two islands comprise the United Kingdom and the Republic of Ireland (or Eire), and the second two islands comprise New Zealand. Among these four islands, there can be no doubt that South Island is the least polluted and most spectacularly scenic of them all.
There is much competition to make such a claim. The island of England, politically constituting England, Scotland, and Wales of the United Kingdom, is dotted with country villages set alongside rivers and lakes. There are not very tall but nonetheless rugged mountains in the north, and endless miles of rocky coastline that seem mystical. Ireland, too, is a paradise of greenery, with far fewer people than populous England and even more quaint villages scattered among its low-lying hills and forever green fields. North Island in New Zealand sports a balmy climate and the beaches to make use of it; one beach alone is more than 150 kilometers long and with relatively few people on its shores, one can pretend one is at the very end of the earth. Volcanoes, large lakes, and quickly flowing rivers traverse the land. Given the beauty of these three islands, what makes South Island so special?
Plenty. For those who like mountains, South Island is sure to please. Mt. Cook at 3764 meters is its highest peak, with 16 others above 3000 meters. Naturally, many local and foreign mountain climbers come here for the challenge of these Southern Alps. In addition, there is an extensive glacier system, endless forests, and innumerable lakes throughout this highland area. Some of the world’s best mountain scenery is available within the 500-kilometer long chain of the Southern Alps.
Perhaps you prefer the sea? South Island is not only an island, but many tiny islets can be found off its coastline. Great deep-sea fishing, scuba diving, and snorkeling can be had, though the waters here are cooler than those of North Island. (Remember, in the Southern Hemisphere, as we go north, it gets warmer.)As fewer people live on South Island than on North Island, those who crave solitude and pristine beaches will be amazed at their luck here. With almost no heavy industry on South Island, the air, water, and land are all free of pollution. The Local seafood is therefore clean, plentiful, and never-ending.
Do healthful climates interest you? South Island is the place to be. Its temperate climate sees little snow except in the highlands and mountainous areas. Like Ireland and England, there are no extremes of temperature, either. Summers are warm, not hot, and winters are brisk rather than freezing. The fresh air is sometimes humid from the abundant rainfall of this area. Every season invites the nature lover to get out and be active in the countryside.
Of course, South Island is not for everyone. For those who need busy, crowded, noisy, and polluted cities, this Southern outpost will surely disappoint. For those who enjoy pressure and stress, South Island will leave them empty-handed. And for those who would rather stay at home or in an office in front of a computer screen or in the thumping, smoke-filled dance floors of discos, some of the world’s best natural scenery will never entice them away. For the rest of us, though, South Island is the world’s best kept secret. If Nature’s paradise sounds alluring, make a point of visiting South Island.
One of the odder coincidences of physical geography is the fact that there are two double islands, roughly the same size, positioned at each other’s antipodes, or farthest-distant point. The islands of England and Ireland in the Northern Hemisphere and the islands of North Island and South Island in the southern Hemisphere are just such a coincidence. The first two islands comprise the United Kingdom and the Republic of Ireland (or Eire), and the second two islands comprise New Zealand. Among these four islands, there can be no doubt that South Island is the least polluted and most spectacularly scenic of them all.
自然地理中一个较为奇特的巧合是,世界上存在着两组大小相近的双岛,它们分别位于彼此的对映点,也就是地球的两极。北半球的英格兰和爱尔兰群岛以及南半球的新西兰南北二岛就是这样的巧合。前两者构成了联合王国和爱尔兰共和国,后两者则组成了新西兰。在这四个岛屿中,南岛无疑是污染最少且风景最为秀丽的。
对于谁才是风景最秀丽的岛屿,各方竞争激烈。政治上构成英国的英格兰岛,遍布着点缀在河流和湖泊之畔的乡村。北部有虽不高耸却崎岖的山脉,以及绵延无尽、神秘莫测的岩石海岸线。爱尔兰也是一片绿意盎然的乐土,人口远少于人口密集的英格兰,其低洼的丘陵和终年翠绿的田野间散布着更多古雅的村落。新西兰的北岛气候宜人,还有诸多可供享受的海滩;仅一个海滩就长达150多公里,而且海岸线上人相对较少,让人仿佛置身于世界尽头。岛上有火山、大湖泊和湍急的河流。鉴于这三个岛屿的美丽,那么南岛究竟有何特别之处呢?
特别之处可多了。对于喜爱山脉的人来说,南岛绝对会让他们心满意足。库克山海拔3764米,是其最高峰,还有另外16座山峰海拔超过3000米。自然而然地,许多国内外的登山者都来到这里挑战南阿尔卑斯山脉。此外,这片高地地区还有广阔的冰川系统、无垠的森林和无数的湖泊。在长达500公里的南阿尔卑斯山脉中,能领略到一些世界上最棒的山地风光。
或许你更喜欢大海?南岛不仅是一个岛屿,其海岸线外还有许多小岛屿。这里有绝佳的深海捕鱼、水肺潜水和浮潜条件,尽管这里的海水比北岛的海水更凉爽。(记住,在南半球,越往北走,气候越温暖。)由于南岛的人口比北岛少,那些渴望独处和纯净海滩的人会在这里惊喜地发现自己运气真好。南岛几乎没有重工业,空气、水和土地都没有污染。因此,当地的海鲜干净、丰富且源源不断。
有益健康的气候吸引你吗?南岛就是这样的地方。除了高地和山区,这里气候温和,降雪很少。和爱尔兰、英格兰一样,这里也没有极端的气温。夏天温暖但不炎热,冬天凉爽但不寒冷。这片地区充沛的降雨有时会让新鲜空气变得湿润。每个季节都吸引着热爱大自然的人到户外去,在乡村尽情活动。
当然,南岛并非适合所有人。对于那些需要繁忙、拥挤、嘈杂和污染城市的人来说,这个南方前哨肯定会让他们失望。对于那些喜欢压力和紧张的人来说,南岛也不会给他们带来满足感。而对于那些宁愿待在家里或办公室对着电脑屏幕,或者在迪斯科舞厅震耳欲聋、烟雾弥漫的舞池里的人来说,世界上一些最棒的自然风光永远无法吸引他们离开。然而,对于我们其余的人来说,南岛是世界上最隐秘的瑰宝。如果大自然的天堂听起来很诱人,一定要去游览一下南岛。
自然地理中一个较为奇特的巧合是,世界上存在着两组大小相近的双岛,它们分别位于彼此的对映点,也就是地球的两极。北半球的英格兰和爱尔兰群岛以及南半球的新西兰南北二岛就是这样的巧合。前两者构成了联合王国和爱尔兰共和国,后两者则组成了新西兰。在这四个岛屿中,南岛无疑是污染最少且风景最为秀丽的。 ## Vocabulary & Idioms - odder——奇怪的 - physical geography——自然地理学 - there are two double islands——有两对岛屿 - antipodes——对跖地 - hemisphere——半球 - be dotted with——点缀着 - rugged——崎岖的 - mystical——神秘的 - quaint——古雅的 - low-lying——低洼的 - balmy——温和的 - traverse——穿过 - Alps——阿尔卑斯山 - islet——小岛 - scuba——水肺 - snorkeling——潜水 - never-ending——永无止境的 - brisk——轻快的 - outpost——边远地区 - empty-handed空手 - thumping——砰砰响的 - entice——引诱 - make a point of + V-ing——必定,总是要做 - On the first day of each month I make a point of paying my rent in person.
溶液:溶质+溶剂
高分子溶液:高聚物以分子状态分散在溶剂中所形成的均相混合物,热力学上稳定的二元或多元体系
高分子溶液的用途
==浓溶液和稀溶液最本质的区别==:稀溶液中单个大分子链线团是孤立存在的,相互之间没有交叠;而在浓厚体系中,大分子链之间发生聚集和缠结。
极性相近
溶剂化作用——具有相异电性的两种基团,极性强弱越接近,彼此间相互作用越强、结合力越大。
==溶剂-高分子相互作用>高分子-高分子间相互作用==
$$ \Delta \rm{E}=\Delta \rm{H}-\rm{RT} $$
$$ \rm{CED=\dfrac{\Delta E}{V_0}} $$
$$ \rm{\delta=\sqrt{CED}=\dfrac{\sum F(基团摩尔引力常数)}{V}=\dfrac{\rho\sum F}{M_0}} $$
溶度参数是具有加和性的 δm = δ1ϕ1 + δ2ϕ2 ==选择同高分子溶质溶度参数相近的溶剂通常有利于溶解==
==真实的溶解情况需要将三种因素综合考虑==
$$ \rm{\Delta G_m=\Delta H_m -T \Delta S_m} $$
极性高分子+极性溶液
非极性溶液——Hildebrand公式
$$ \rm{\Delta H_m=V\phi_1\phi_2(\delta_1-\delta_2)^2} $$
二元混合体系中两种分子中各含xA和xB个单元,可有三种不同情况
溶液 | XA | XB |
---|---|---|
小分子溶液 | 1 | 1 |
高分子溶液 | 1 | x |
高分子共混 | x1 | x2 |
理想溶液的热力学性质 $$ \rm{\Delta S_m=-k[N_1\ln X_1+N_2\ln X_2]} $$
$$ \rm{\Delta H_m=0} $$
$$ \rm{\Delta V_m=0} $$
$$ \rm{\Delta P=P_1^0X_2} $$
基本假定:
$$ \mathrm{\Delta S_m=S_{溶液}-S_{高分子}=-k=[N_1\ln {\dfrac{N_1}{N_1+xN_2}}+N_2\ln{\dfrac{xN_2}{N_1+xN_2}}]} $$
$$ \phi_1=\dfrac{N_1}{N_1+xN_2} $$
$$ \phi_2=\dfrac{xN_2}{N_1+xN_2} $$
混合体系中溶剂分子的体积分数为ϕ1,高分子为ϕ2
混合焓: ΔHM = (Z − 2)Δε12N1ϕ2 = RTχ1n1ϕ2 Flory-Huggins相互作用参数:高分子与溶剂混合过程中相互作用能的变化 $$ \chi_1=\dfrac{(Z-2)\Delta \varepsilon_{12}}{kT} $$
溶剂类型 | Δε12 | χ |
---|---|---|
良溶剂 | Δε12<0 | χ<0 |
无热溶剂 | Δε12=0 | χ=0 |
亚良溶剂 | Δε12>0 | χ>0 |
混合自由能 ΔGM = RT[n1ln ϕ1 + n2ln ϕ2 + χ1n1ϕ2]
在无限大的溶液体系中加入1摩尔溶质或溶剂引起热力学函数的变化称为偏摩尔量 $$ 溶剂的化学位:\Delta \mu_1=RT[\ln \phi_1+(1-\dfrac{1}{x})\phi_2+\chi_1\phi_1^2] $$
超量化学位 $$ \Delta \mu_1^E=-RT\Psi_1(1-\dfrac{\Theta}{T})\phi_2^2 $$
$$ \Theta=\dfrac{T\kappa_1}{\Psi_1} $$
一维溶胀因子α
Θ状态——无绕状态,可==看作==理想状态
此时的溶液称为Θ 溶液, 溶剂称为Θ 溶剂达到Θ 条件的温度称为Θ 温度,具有以下性质 $$ \chi_1=\dfrac{1}{2}, \Delta \mu^E=0, \Delta G_a=0, u=0, \alpha=1 $$
$$ \Pi=-\dfrac{1}{V^{'}}[\mu_1-\mu_{10}]=-\dfrac{\Delta \mu_1}{V_1^{'}} $$
以π/(RTc)对浓度c作图,
可得一条直线。 斜率为A2,
由截距可得数均分子量
$$
\dfrac{\pi}{RTc}=[\dfrac{1}{\overline{M_n}}+A_2c]
$$
$$ A_2=(\dfrac{1}{2}-\chi)\dfrac{v_2^2}{v_1} $$
$$ \phi_{2c}=\dfrac{1}{1+\sqrt{x}} $$
$$ \chi_{1c}=\dfrac{1}{2x}(1+\sqrt{x})^2 $$
author.bio
author.job